• 1
  • 2
  • 3
  • 4

齐鲁工业大学

当前位置:考研招生在线 > 考研备考  > 考研大纲

集美大学数学分析2022年硕士研究生初试自命题科目考试大纲

时间:2022-08-01 09:05:32     作者:考研招生在线

考试科目代码:[622]

考试科目名称:数学分析

一、考试目标

(一)考查考生对数学分析的基本概念、基本理论、基本方法和基本计算的理解和掌握程度。

(二)考查考生的基本计算能力,逻辑推理能力,抽象思维能力,分析和解决实际问题的综合能力。

二、试卷结构

(一)考试时间:180分钟,满分:150分。

(二)题型结构

1、计算题:6小题,每小题12分,共72分。

2、讨论题:2小题。每小题15分,共30分。

3、证明题:4小题,每小题12分,共48分。

三、答题方式

闭卷笔试。

四、考试内容

(一)一元函数微积分学部分,38%(57分)

1、分析引论

考试内容:

函数初等特性;基本初等函数;初等函数;常见分段函数;数列、函数极限分析定义;左、右极限;无穷小与无穷大定义;无穷小的比较;极限一般性质、四则运算和复合运算性质;极限存在判定准则;求极限方法;函数的连续性;间断点及分类;函数一致连续性及判定法;闭区间上连续函数4条性质;上(下)确界、上(下)极限、聚点概念;实数完备性的7个等价描述。

考试要求:

[1] 掌握函数初等特性和基本初等函数及其图形。

[2] 理解变量极限及连续的概念,会判定极限的存在性,会证明数列的收敛性,掌握求极限的基本方法。

[3] 掌握函数一致连续性的论证方法,掌握闭区间上连续函数的基本性质及其应用。

[4] 理解上(下)确界和数列上(下)极限概念,了解实数完备性的等价命题。

2、一元函数微分学

考试内容:

导数概念及几何意义;导数四则、复合、反函数运算法则;隐函数、参量函数求导方法;微分概念及几何意义;微分四则运算法则;高阶导数;高阶微分;求导数或微分;Fermat引理;Rolle、Lagrange和Cauchy中值定理;两种余项形式的Taylor公式;洛必塔法则;函数单调性、凹凸性及判定法;函数极值点、拐点及判定法;曲线渐近线与作图。

考试要求:

[1] 理解导数和微分的概念,掌握导数与微分、高阶导数的计算方法。

[2] 掌握微分中值定理、Taylor公式(两种余项形式)及其应用。掌握不等式证明的微分学方法。

[3] 会用导数判定函数的几何性态。

3、一元函数积分学

考试内容:

原函数概念;不定积分及性质;定积分概念;可积性判定准则;可积的充分条件;定积分性质;定积分中值定理;变限积分函数及性质;原函数存在性;微积分学基本定理;换元积分法;分部积分法;不定积分计算法;定积分计算法;定积分在几何上应用。

考试要求:

[1] 理解原函数、定积分的概念,了解可积性判定准则。掌

握积分计算方法。

[2] 掌握定积分的基本性质,掌握变限积分求导公式,掌握

微积分学基本定理及其应用。

[3] 会用微元法解决实际问题。

(二)多元函数微积分学部分,32%(48分)

1、多元函数微分学

考试内容:

多元函数概念;重极限与累次极限;重极限存在性判定与求法;多元函数连续性及性质;偏导数、方向导数与全微分概念;一阶全微分形式不变性;高阶偏导数;二元函数微分中值定理;偏导数计算法;链锁法则;隐函数(组)存在性及求导法;偏导数在几何上应用;多元函数极值及判定法;条件极值与Lagrang乘数法;多元函数最大(小)值的确定。

考试要求:

[1] 会判定重极限的存在性,理解多元函数连续、偏导数、全微分、方向导数的概念及相互联系。

[2] 掌握偏导数(高阶偏导数)的计算方法,掌握隐函数的求导方法,掌握微分学在几何上的应用,

[3] 掌握多元函数极值的判定法,会用Lagrang乘数法解决实际问题。

在线报名申请表
上传

上传格式要求:jpg、png、zip、docx、、doc、xlsx、xls、pptx、pdf(100MB),最多上传10个文件